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A method is p roposed  for  the s e m i e m p i r i c a l  computat ion of the t e m p e r a t u r e s  at s eve ra l  
points or  the mean-bulk  t e m p e r a t u r e  of complex s y s t e m s  descr ibed  by l inear  heat -conduc-  
tion equations. The t e m p e r a t u r e  of the surrounding medium depends on the t ime.  

Application of a s imple  r egu la r  mode, as well as of r egu la r  modes  of the second and third kind, is 
well known [1, 2]. An at tempt  is made below to use a broad c lass  of r egu la r  the rma l  modes for  the s e m i -  
empi r i ca l  computation of the t e m p e r a t u r e  at s eve ra l  points,  or  of the mean-bulk  t empe ra tu r e ,  of complex 
bodies on the bas i s  of a single approach  to the calculat ion of the t e m p e r a t u r e  field. The method developed 
is convenient in those cases  when, for  technical  r easons ,  it is difficult to obtain a r eco rd  of the above-  
mentioned t e m p e r a t u r e s  that is continuous in t ime.  

1. Let  the re  be a s y s t e m  consist ing of a finite number  of bodies in the rmal  contact,  and let  the 
" response , "  which is the t e m p e r a t u r e  field of the sys tem,  be l inear  in the "input pulse ,"  which is the t ime  
dependence of the t e m p e r a t u r e  of the surrounding medium. This la t te r  is valid under the following condi- 
t ions:  

a) the t empe ra tu r e  field of the s y s t e m  is descr ibed  by l inear  equations of heat conduction without 
sources  and is continuous on the inner boundaries  of the s y s t e m  together  with the normal  heat-f lux 
component (the the rmophys ica l  cha rac t e r i s t i c s  of the sy s t em can hence depend p ieeewise-cont inu-  
ously on the space  coordinates  in an a r b i t r a r y  manner) ;  

b) heat exchange with the external  medimn is governed by the h e a t - t r a n s f e r  coefficient  which is 
p iecewise-cont inuous  on the outer  boundaries  of the sys tem;  

e) the t e m p e r a t u r e  of the s y s t e m  at the initial instant is zero.  

Then, as is known [3], the solution of the p rob lem of the t e m p e r a t u r e  field can be r ep re sen ted  as the 
Duhamel integral 

t(~, r-) -- g = " --t'{~(~)--t0}~f(~ -- k, 7)dk. (1. 1) 

The val idi ty of (1.1), which is a pa r t i cu l a r  ease of a convolution integral ,  is the genera l  p r o p e r t y  of 
l inear  sys t ems  of d ive rse  nature.  Hence, as is done for  l inear  sy s t ems ,  a numer ica l  dependence f(r, 5) 
can be obtained exper imentMly  a~ seve ra l  points of the s y s t e m  and then a considerable  volume of in tegro-  
differential  numer ica l  operat ions  can be p e r f o r m e d  to evaluate t(r ,  r) at these  points for  a given function 
~o (r) in conformi ty  with (1.1). 

However,  it is interest ing to obtain analyt ical ly  an explici t  dependence of the t e m p e r a t u r e  field on 
the t ime  and cer ta in  p a r a m e t e r s  of the boundary t empe ra tu r e ,  espec ia l ly  in those cases  when it is difficult, 
with sufficient accuracy ,  to find the t ime  der iva t ive  of the function f(r,  r) f r o m  exper iment  or  to make a 
continuous r ecord  of this function at s eve ra l  points of the sys tem.  The analytical solution of this p rob lem 
turns  out to be rea l i zab le  in r egu la r  t he rm a l  modes.  
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2. According to the fundamental  hypothesis  of the r egu la r  t he rma l  mode [1, 2], the function f(% ~') 
can be r ep re sen ted  as 

7) = e x p  ( 2 . 1 )  

n ~ O  

where mn is a sequence of posi t ive  numbers ,  as we specify,  in increas ing  order ,  and un(r) is a function of 
the space coordinates ,  de te rmined  uniquely by the the rmophys ica l  c h a r a c t e r i s t i c s  of the s y s t e m  and the 
h e a t - t r a n s f e r  coefficient.  He re  evidently 

r162 

~,u~(r) = 1. (2.2) 
rt=O 

Applying the Duhamel in tegra l  t e r m  by t e r m  to (2.1), we obtain 

t(~, }) - - t  o = ~]  rn~u~(7)exp [ - - m ~ ] ,  {qo (}~) --to} exp [m~)~ld)~. (2.3) 
n = 0  0 

The val idi ty  of t e r m - b y - t e r m  applicat ion of the Duhamel integral  is p roved  in the Appendix. The in tegra ls  
in the r ight  side of (2.3) a r e  s imple  in s t ruc tu re  and eas i ly  evaluated analyt ical ly  for  some impor tant  p a r -  
t i cu la r  cases  of the t ime  dependence of the t e m p e r a t u r e  of the ambient  medium. The resu l t  of calculat ing 
the t e m p e r a t u r e  field in conformi ty  with (2.3), taking account of (2.2), has the fo rm of a sum of s eve ra l  
t e r m s  with a s imple  t ime  dependence and some  quantity S which is the sum of an infinite s e r i e s  consis t ing 
of t e r m s  decreas ing  exponential ly with t ime.  The quantity S depends in a complex manner  on the t ime ,  but 
its absolute and re la t ive  contribution to the t e m p e r a t u r e  field tends to ze ro  as 7 - -  ~ Pas s ing  to the 
r egu la r  t he rma l  mode, i . e . ,  neglecting S, a f te r  s imple  but tedious calculat ions we obtain the r e su l t s  p r e -  
sented in Table 1. Here  Y0, 'gl . . . .  and co a re  p a r a m e t e r s  of the t ime  dependence of the t e m p e r a t u r e  of the 
ambient  medium; ks(?),  7h(?), X2(~, co), F~(5, c~2), F2(?, c~2), ~1(~', c~2), ~I'2(5, co2) a re  functions of the v a r i -  
ables  indicated in pa ren theses .  The dependence of these  functions on ~, co, co 2 is defined uniquely by the 
quanti t ies m n and Un(~') f rom (2.1), i . e . ,  the the rmophys ica l  cha rac t e r i s t i c s  of the s y s t e m  and the heat -  
t r a n s f e r  coeff ic ients .  Thus, for  example ,  

ee 

and the remain ing  functions a re  no less  complex and the i r  analyt ieal  calculat ion is not poss ib le  in the 
genera l  ease .  Fo r  the sequel it is essent ia l  only that these  functions be independent of the t ime  and 'g0, 

Y1, . . . .  

Let  us now note the following: 

a) the broad c lass  ~0(~-)is approximated  on cons iderable  t ime segments  by a l inear  combination of 
polynomials ,  exponentials ,  t r i gonomet r i c  functions, etc. 

b) f r o m  the l inea r i ty  of (1.1) in {q~(~-)-t0} the re  follows 

i ~ ' J  f ~ V  

;)= ;) for  - -  to = - -  t0} ,  
i = 0  i = 0  

where a i a re  constants ,  ti(% ~) is the t e m p e r a t u r e  field of the s y s t e m  for  ~o(T) --- q)i(T). 

Hence, the t e m p e r a t u r e  field of a s y s t e m  in the r egu la r  t he rma l  mode is r ep resen ted ,  for  a broad 
c lass  of functions q)(~-), as a l inear  combination of the r e su l t s  p resen ted  in Table 1, and the i r  like. 

There fo re ,  for  a r b i t r a r y  l inear  s y s t e m s  and a broad c lass  of t ime  dependences of the t e m p e r a t u r e  of 
the ambient  medium, it p roves  poss ib le  to obtain an explicit  dependence of the t e m p e r a t u r e  field on the 
t ime ,  the p a r a m e t e r s  "go, "gl . . . . .  and pa r t i a l l y  on co in r egu la r  t he rma l  modes .  F o r  different  s y s t e m s  only 
m 0 and the functions ks,  Xl,2, Fi,2 etc. ,  will be different .  

It is e a sy  to see  that,  on averaging  the t e m p e r a t u r e  field in the r egu la r  t he rma l  mode over  an a rb i -  
t r a r y  volume of the sys t em,  the fo rm of the dependence on the t ime  and the p a r a m e t e r s  will not change, 
but the functions dependent on ~ a r e  rep laced  in an appropr i a t e  way by the values  averaged  over  the volume.  

As has been mentioned above, the values  of the t e m p e r a t u r e  field indicated in Table 1 differ  f r o m  the 
t rue  values  by the quantity S. Thus, 
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TABLE i. Formulas for the Calculation of the Temperature Fields of 
the System t(r, ~') 

No. e(z) r (r,7) in the regular thermal mode 

2 q~ ('c) = ~ ys'~ s =_ Pi (~) 
i S ~ 0  

3 r (~) = 70 + 71 exp [-- ~ov] 

4 q0 (r) = ~?o ++ 71z0] cos [~o~ 

5 q~ (t) = 7o ++ 710] cos [o~t 

t (% r) = 7o + {7~ --  27~kl (-0 + 67fl~2 (~)} "r + {71 
- -  3?fl h ~) } -c~ + 7aT a + {27~k 2 (}) --  71kl (~ -- 673k3( ~ } 

s=O 

m o  

- -  exp [-- moX] } + 71~,2 ~, (o) exp [-- o)~1 

t (x,r) = 7o + 71F1 (7, ~o2) xcos {cox + 0 + W 1 (~, ~o~)} 
+ VlF~ (7, ~o9 cos { ~ +  0 + ~ ~, ~9} 

t (% r) = 7o + 7~F1 (~, ~~ cos {~oz + 0 + Wi ~, o~)} 

~o 

- -  /72--3 S = Xu,~(7){to - -  7o + 7~m~ I - -  27~m~-2+ 673 ~ } exp [ - -  rn,~T]. 
rz~O 

in  the  f i r s t  e x a m p l e  in T a b l e  1. 

I t  i s  i n t e r e s t i n g  to  note ,  h o w e v e r ,  t ha t  in  o r d e r  to  t ake  accoun t  of t he  in f luence  of the  i n i t i a l  t e m p e r a -  
t u r e  to, one o r  s e v e r a l  of the  f i r s t  t e r m s  of the  s e r i e s  can  be r e t a i n e d ,  to obta in ,  if i t  can  thus  be  e x p r e s s e d ,  
a " h i g h e r - o r d e r "  r e g u l a r  mode .  

3. The r e s u l t s  p r e s e n t e d  p e r m i t  s e v e r a l  deduc t i ons .  

A g e n e r a l  p r i n c i p l e  is  e x p r e s s e d  in [4] a c c o r d i n g  to which,  in the  r e g u l a r  t h e r m a l  mode ,  

d < t > =c{ < t > -~(~)}, (3.1) 
dx 

w h e r e  < t > is  the  m e a n - b u l k  t e m p e r a t u r e  and e is  a cons tan t .  

F o r  e x a m p l e ,  l e t  ~0(r) = 7o + Yt r + 72 T2 + 3'3 7~. C o m p a r i n g  the  so lu t i on  of (3.1) with the  r e s u l t  p r e -  
s e n t e d  in  Tab le  1, i t  i s  e a s y  to  s e e  tha t  c = - ( k l }  - t  and tha t  t h e y  a g r e e  ordy in the  p a r t i c u l a r  c a s e  

( k 3 } = ( k l }  3, < k ~ } = < k l }  ~, 

w h e r e  ( k s } i s  the  m e a n - b u l k  v a l u e  of the  func t ion  ks(~'). They  d i f f e r  in t he  r e m a i n i n g  c a s e s  by  the  quan t i t y  

673 { (k~ } - -  < k 1 } 2}~+2V2 { ( k  2 ) - -  < k 1 } 2}--673 { ( k  s } - -  < k I )  3}, 

the  r e l a t i v e  c o n t r i b u t i o n  of  which  to the  t e m p e r a t u r e  f i e ld  t e n d s  to  z e r o  as  r ~ ~ ,  whi le  the  a b s o l u t e  con-  
t r i b u t i o n  t ends  to  inf in i ty .  In the  o the r  e x a m p l e s  in Tab le  1, c i s  a func t ion  of co. Hence,  the  a p p l i c a t i o n  
of the  Duhame l  i n t e g r a l  p e r m i t s  the  mean ing  of c to be  r e v e a l e d  and a l lows  the  p r i n c i p l e  expounded  above  
to  be  r e f i n e d  in the  s e n s e  tha t  i t  c o r r e c t l y  y i e l d s  the  func t ion  <t> wi th  a s m a l l  r e l a t i v e ,  but  no a b s o l u t e ,  
e r r o r .  

Of s p e c i a l  i n t e r e s t  i s  t he  e a s e  of  an  exponen t i a l  t i m e  d e p e n d e n c e  of the  t e m p e r a t u r e  of the  s u r r o u n d -  
ing m e d i u m .  P a s s i n g  to  the  l i m i t  w ~ m 0 in e x a m p l e  3 in Tab le  1, we ob ta in  fo r  w = m 0 

t(x, r) = 70 + 71~1(~)mo T exp [ - -  mo'C], (3.2) 

i . e . ,  an  o r i g i n a l  r e s o n a n c e  p h e n o m e n o n  s e t s  in when the s y s t e m  t e m p e r a t u r e  v a r i e s  a c c o r d i n g  to  the  s a m e  
exponen t i a l  l aw but  the  p r e e x p o n e n t i a l  f a c t o r ,  i . e . ,  the  a m p l i t u d e  of the  exponen t i a l ,  t ends  to in f in i ty  a s  
~- - -  ~o. F o r  w >> m 0 the  d e p e n d e n c e  on w is  a l s o  w r i t t e n  e x p l i c i t l y ,  t he  hea t ing  be ing  l i m i t e d  b y  the  s y s t e m  
i n e r t i a  

t(r, r) = 70 + 71~1 (r) mo (~ exp [ - -  m0xl. (3.3) 

4. P r a c t i c a l  a p p l i c a t i o n  of the  r e s u l t s  ob ta ined  can  be ach i eved  b y  an e x p e r i m e n t a l  d e t e r m i n a t i o n  of 
t he  v a l u e s  of the  func t ions  k s ,  hi ,e,  F I ,  2, e t c . ,  a t  one o r  s e v e r a l  po in t s  of the  s y s t e m ,  o r  of t h e i r  m e a n - b u l k  
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values. For example, let the temperature of the surrounding medium depend exponentially on the time. 
According to example 3 in Table 1, it is sufficient to determine experimentally, in a regular thermal mode, 
the value of the temperature field tO-, r0) at a fixed point r0 of the given system for a fixed w at three mo- 
ments of time, in order to then compute m 0 and the values of the functions k1(r0) , k2(r0, w) at this point. 
Having determined these functions, the value of the temperature field in a regular thermal mode can be 
computed by the formula of example 3 at the point r0 at arbitrary times and for any To, Ti but fixed w. The 
computation of the mean-bulk temperature of an arbitrary part of the system is accomplished by the same 
method of replacing the functions k1(~) , k2(~ , co) by their mean-bulk values. The mean-bulk values of these 
functions is achieved by the method of three measurements of the mean-bulk temperature which is realiz- 
able, for example, by a calorimetric study of the part of the system under investigation. According to 
(3.2) and (3.3), for  w = m 0 and co >> m 0 two m e a s u r e m e n t s  a r e  sufficient.  The quantity m 0 is also d e t e r -  
mined by methods of the s imple  r egu la r  mode [1, 2]. 

In other  cases ,  the dependences of the t e m p e r a t u r e  of the surrounding medium on the t ime  of ope ra -  
t ion a r e  pe r f ec t ly  analogous and make it poss ib le  to bypass  the p rob l em of de termining  the the rmophys ica l  
c h a r a c t e r i s t i c s  of complex s y s t e m s  and the dis tr ibut ion of the h e a t - t r a n s f e r  coefficient.  

APPENDIX 

The correctness of the operation of term-by-term application of the Duhamel integral should be ana- 
lyzed separately. Let us prove the following assertion. For r E [0, %) let 

i) the series comprised of functions fn(r) converge uniformly to the function f(~-): 
r 

n=0 

where fn(r) is a function of r and perhaps still other parameters which are not written explicitly 
here; 

2) the functions fn(~-), f(~-), qo(T) be continuously differentiable. Then 

t or os t ~  

0 = 0 

Proof. .  According to the second condition, all the in tegra ls  in (1) exis t  and can be in tegrated by 
p a r t s ,  whilst the der iva t ive  0~o(~--k)/ah is bounded in the segment  [0, ~'] and, t he re fo re  [5], the s e r i e s  

fn(X)(a~o(~--X)/0X) converges  uniformly,  by v i r tue  of the f i r s t  condition, and admits  of t e r m - b y - t e r m  
n = O  

integration. Hence, we have 

0 

T 

0 n = O  

- -  [ '~ (~ )  o;~ , oT ~ (~') d ~ ,  
b 

QED. The assertion is extended directly to the case of piecewise-continuous derivatives. 

The continuous differentiability of the members of the series (2.1) is evident. From physical con- 
siderations it is also clear that the rate of temperature rise within the system f(% r) (for constant tem- 
perature of the surrounding medium) is piecewise continuous. The requirements of piecewise-continuity 
of the rate of temperature rise of the temperature of the ambient medium qa(T) is always satisfied. The 
convergence of the series (2.1), by the Abel criterion [5], implies its uniform convergence, since the 

series X Un(r) (independent of "r) converges uniformly, and exp I-ranT] form, for fixed G monotonic se- 
n~0 

quences bounded in a set. 
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Therefore ,  in heat-conduction problems the se r i e s  (2.1) and go(~-) complete ly  sat isfy the conditions of 
the asse r t ion  and admit of t e r m - b y - t e r m  application of the Duhamel integral.  

t(~-, ~), t i(r ,  ~-) 
go(r), goi(~-) 

to 
f(~-, ~-) 
Un(~) 
TS, co, 
Pi(r) 
ks(~), kl(~), k2(r , co), F1,2(r, co), ~l,2(r, co) 

ai ,  c 
S 

N O T A T I O N  

are  t empera tu re  distributions within the body; 
are  t ime dependences of the t empera tu re  of the surrounding 
medium; 
is the initial body t empera tu re ;  
is the t empera tu re  field for  t o = 0, go(r) = 1; 
a re  functions of the coordinates of points of the body; 
a re  p a r a m e t e r s  of the function go (T); 
is a polynomial of the i- th power in T; 
a re  functions charac ter iz ing  the dependence of the t empera tu re  
field on the coordinates of points of the body in regular  modes;  
a re  constants;  
is the sum of an infinite se r ies  which is the deviation of the 
t rue  behavior of the t empera tu re  f rom the simple dependence 
calculated in the regula r  thermal  mode; 
is the r ad ius -vec to r .  

1~ 

2. 

3. 
4. 
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